Autonomous Mobile Robot Navigation Methods

Team: Silviano Torres, Anthony Linarez, Chris Bowles, Alex
Torres
Mentor: Joey Durham
Advisor: Francesco Bullo

The Big Picture of Autonomous Robots

http://www.starstore.com/acatalog/Starstore_Catalogue_STAR_WARS_COOKIE_JARS_5525.html

The Big Picture of Autonomous Robots

- What are autonomous robots?

http://adamw523.wordpress.com/2007/12/13/annual-uoit-robotics-competition/

The Big Picture of Autonomous Robots

- What are autonomous robots?
- The laboratory's focus.

http://upload.wikimedia.org/wikipedia/commons/thumb/d/d d/Industrial_Robotics_in_car_production.jpg/300pxIndustrial_Robotics_in_car_production.jpg

The Big Picture of Autonomous Robots

- What are autonomous robots?
- The laboratory's focus.
- The current challenge at hand.

http://www.cs.sfu.ca/~vaughan/img/stage-2.0.0a.1.png

Project Goals

http://news.webclicshoppingmall.com/content/view/23/1/

Project Goals

- Compose an algorithm for robots to maneuver around their environment.

Project Goals

- Compose an algorithm for robots to maneuver around their environment.
- Develop an understanding of how the robot sees it's environment.

Project Goals

- Compose an algorithm for robots to maneuver around their environment.
- Develop an understanding of how the robot sees it's environment.
- Assemble a flowchart with different possibilities and outcomes.

Project Goals

- Compose an algorithm for robots to maneuver around their environment.
- Develop an understanding of how the robot sees it's environment.
- Assemble a flowchart with different possibilities and outcomes.

Project Goals

- Compose an algorithm for robots to maneuver around their environment.
- Develop an understanding of how the robot sees it's environment.
- Assemble a flowchart with different possibilities and outcomes.

Project Goals

- Compose an algorithm for robots to maneuver around their environment.
- Develop an understanding of how the robot sees it's environment.
- Assemble a flowchart with different possibilities and outcomes.

- Improve the robot's backbone structure of "Think, Read, \& Act."

Experimental Methods

$\mathrm{NaOH}+\mathrm{HCl}-->\mathrm{H}_{2} 0+\mathrm{NaCl}$

Experimental Methods

- Designing Algorithms

Experimental Methods

- Designing Algorithms
- Running Tests on the Algorithms

Experimental Methods

- Designing Algorithms
- Running Tests on the Algorithms
- Refining errors within the Algorithms

Experimental Methods

- Designing Algorithms
- Running Tests on the Algorithms
- Refining errors within the Algorithms
- Repeating Steps 1 through 3

Designing Algorithms

Designing Algorithms

- Algorithms will be written with C++ using the Player/Stage interface.

Diagnostic Tests

Diagnostic Tests

- Test \#1

1st Test

Diagnostic Tests

- Test \#1
- Test \#2

Diagnostic Tests

- Test \#1
- Test \#2
- Test \#3

Diagnostic Tests

- Test \#1
- Test \#2
- Test \#3
- Test \#4

4th Test

Diagnostic Tests

- Test \#1
- Test \#2
- Test \#3
- Test \#4
- Test \#5

Diagnostic Tests

- Test \#1
- Test \#2
- Test \#3
- Test \#4
- Test \#5

Algorithmic Principles

Algorithmic Principles

- Alex \& Silviano's Buffer zone

Algorithmic Principles

- Alex \& Silviano's Buffer zone
- Chris's - Rectangular obstacle filters

Algorithmic Principles

- Alex \& Silviano's Buffer zone
- Chris's - Rectangular obstacle filters
- Anthony's - Gaps within corners

Algorithmic Principles

- Alex \& Silviano's Buffer zone
- Chris's - Rectangular obstacle filters
 from the closest obstacle

Refining Errors

Algorithm Concepts

Finished Algorithm

Refining Errors

- Analyzing the robot's implementation of the Algorithm.

Refining Errors

- Analyzing the robot's implementation of the Algorithm.
- Detect all errors within the $1^{\text {st }}$ phase of tests.

Refining Errors

- Analyzing the robot's implementation of the Algorithm.
- Detect all errors within the $1^{\text {st }}$ phase of tests.
- Correcting the errors \& running additional tests.

Data Table

Algorithm	Test	Test	Test	Test	Test
Legend:					

Data Table

Legend:
Three trials per test. 15 trials per algorithm. 25 tests total, consisting of 75 trials.

Data Table

Legend:
Three trials per test. 15 trials per algorithm. 25 tests total, consisting of 75 trials.
\checkmark - Test Passed, X - Test Failed, * - Technical Difficulty, N/A - Not attempted

Data Table

Algorithm	Test	Test	Test	Test	Test

Legend:
Three trials per test. 15 trials per algorithm. 25 tests total, consisting of 75 trials.
\checkmark - Test Passed, X - Test Failed, * - Technical Difficulty, N/A - Not attempted

Data Table

Algorithm	Test	Test	Test	Test	Test
Base Algorithm	\checkmark	X	X	X	X

Legend:
Three trials per test. 15 trials per algorithm. 25 tests total, consisting of 75 trials.
\checkmark - Test Passed, X - Test Failed, * - Technical Difficulty, N/A - Not attempted

Data Table

Algorithm	Test	Test	Test	Test	Test
Base Algorithm	\checkmark	X	X	X	X
Alex \& Silviano's - Buffer zone	\checkmark	$\sqrt{ }$ *	$\sqrt{*}$	N/A	N/A

Legend:
Three trials per test. 15 trials per algorithm. 25 tests total, consisting of 75 trials.
\checkmark - Test Passed, X - Test Failed, * - Technical Difficulty, N/A - Not attempted

Data Table

Algorithm	Test	Test	Test	Test	Test
Base Algorithm	$\sqrt{ }$	X	X	X	X
Alex \& Silviano's - Buffer zone	$\sqrt{ }$	${ }^{*}$	$\sqrt{ } *$	N/A	N/A
Chris's - Rectangular obstacle filters	$\sqrt{ }$				

Legend:
Three trials per test. 15 trials per algorithm. 25 tests total, consisting of 75 trials.
\checkmark - Test Passed, X - Test Failed, * - Technical Difficulty, N/A - Not attempted

Data Table

Legend:
Three trials per test. 15 trials per algorithm. 25 tests total, consisting of 75 trials.
\checkmark - Test Passed, X - Test Failed, * - Technical Difficulty, N/A - Not attempted

Data Table

Algorithm	Test	Test	Test	Test	Test
Base Algorithm	$\sqrt{ }$	X	X	X	X
Alex \& Silviano's - Buffer zone	$\sqrt{ }$	$\sqrt{\prime}^{*}$	$\sqrt{ } *$	N/A	N/A
Chris's - Rectangular obstacle filters	$\sqrt{ }$				
Anthony's - Gaps within corners	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{*}^{*}$	$\sqrt{*}^{*}$
Joey's - Repulsion from the closest	$\sqrt{ }$				

Legend:
Three trials per test. 15 trials per algorithm. 25 tests total, consisting of 75 trials.
$\sqrt{ }$ - Test Passed, X - Test Failed, * - Technical Difficulty, N/A - Not attempted

Conclusion

Conclusion

- Base Algorithm - Was able to pass the first test, but failed to pass the 4 tests involving obstacles.

Conclusion

- Base Algorithm - Was able to pass the first test, but failed to pass the 4 tests involving obstacles.
- Alex \& Silviano's Algorithm - Passed the first test; technical problems occurred in $2^{\text {nd }} \& 3^{\text {rd }}$ tests; $4^{\text {th }} \&$ $5^{\text {th }}$ tests could not be completed due to time constraints.

Conclusion

- Base Algorithm - Was able to pass the first test, but failed to pass the 4 tests involving obstacles.
- Alex \& Silviano's Algorithm - Passed the first test; technical problems occurred in $2^{\text {nd }} \& 3^{\text {rd }}$ tests; $4^{\text {th }} \&$ $5^{\text {th }}$ tests could not be completed due to time constraints.
- Chris's Algorithm - Passed all 5 tests with no occurring problems!

Conclusion

- Base Algorithm - Was able to pass the first test, but failed to pass the 4 tests involving obstacles.
- Alex \& Silviano's Algorithm - Passed the first test; technical problems occurred in $2^{\text {nd }} \& 3^{\text {rd }}$ tests; $4^{\text {th }} \&$ $5^{\text {th }}$ tests could not be completed due to time constraints.
- Chris's Algorithm - Passed all 5 tests with no occurring problems!
- Anthony's Algorithm - Passed the first 3 tests; $4^{\text {th }} \&$ $5^{\text {th }}$ tests passed, but with technical difficulties.

Conclusion

- Base Algorithm - Was able to pass the first test, but failed to pass the 4 tests involving obstacles.
- Alex \& Silviano's Algorithm - Passed the first test; technical problems occurred in $2^{\text {nd }} \& 3^{\text {rd }}$ tests; $4^{\text {th }} \&$ $5^{\text {th }}$ tests could not be completed due to time constraints.
- Chris's Algorithm - Passed all 5 tests with no occurring problems!
- Anthony's Algorithm - Passed the first 3 tests; $4^{\text {th }} \&$ $5^{\text {th }}$ tests passed, but with technical difficulties.
- Joey's Algorithm - Also passed all 5 tests flawlessly!

Acknowledgements

- Joey Durham
- Francesco Bullo
- N.S.F. and C.N.S.I.
- S.I.M.S. Program Staff
- "Pod" the Robot

Acknowledgements

- Joey Durham - Guidance and support
- Francesco Bullo
- N.S.F. and C.N.S.I.
- S.I.M.S. Program Staff
- "Pod" the Robot

Acknowledgements

- Joey Durham - Guidance and support
- Francesco Bullo - Usage of his laboratory
- N.S.F. and C.N.S.I.
- S.I.M.S. Program Staff
- "Pod" the Robot

Acknowledgements

- Joey Durham - Guidance and support
- Francesco Bullo - Usage of his laboratory
- N.S.F. and C.N.S.I. - Making it all possible
- S.I.M.S. Program Staff
- "Pod" the Robot

Acknowledgements

- Joey Durham - Guidance and support
- Francesco Bullo - Usage of his laboratory
- N.S.F. and C.N.S.I. - Making it all possible
- S.I.M.S. Program Staff - Good job guys!
- "Pod" the Robot

Acknowledgements

- Joey Durham - Guidance and support
- Francesco Bullo - Usage of his laboratory
- N.S.F. and C.N.S.I. - Making it all possible
- S.I.M.S. Program Staff - Good job guys!
- "Pod" the Robot - Our robot test subject

Acknowledgements

- Joey Durham - Guidance and support
- Francesco Bullo - Usage of his laboratory
- N.S.F. and C.N.S.I. - Making it all possible
- S.I.M.S. Program Staff - Good job guys!
- "Pod" the Robot - Our robot test subject
- Thank volı for watchino_ our

